Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/******************************************************************************************************
(C) 2022 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
contributors to this repository. All Rights Reserved.
This software is protected by copyright law and by international treaties.
The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
contributors to this repository retain full ownership rights in their respective contributions in
the software. This notice grants no license of any kind, including but not limited to patent
license, nor is any license granted by implication, estoppel or otherwise.
Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
contributions.
This software is provided "AS IS", without any express or implied warranties. The software is in the
development stage. It is intended exclusively for experts who have experience with such software and
solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
and fitness for a particular purpose are hereby disclaimed and excluded.
Any dispute, controversy or claim arising under or in relation to providing this software shall be
submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
the United Nations Convention on Contracts on the International Sales of Goods.
*******************************************************************************************************/
/*====================================================================================
EVS Codec 3GPP TS26.443 Nov 04, 2021. Version 12.14.0 / 13.10.0 / 14.6.0 / 15.4.0 / 16.3.0
====================================================================================*/
#include <stdint.h>
#include "options.h"
#ifdef DEBUGGING
#include "debug.h"
#endif
#include <math.h>
#include "rom_dec.h"
#include "rom_com.h"
#include "cnst.h"
#include "prot.h"
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*---------------------------------------------------------------------*
* Local constants
*---------------------------------------------------------------------*/
#define FEC_MAX 512
#define FEC_NB_PULSE_MAX 20
#define FEC_FFT_MAX_SIZE 512
#define FEC_DCIM_FILT_SIZE_MAX 60
#define PHASE_DITH ( PI2 )
#define DELTA_CORR 6 /* Range for phase correction around peak */
#define THRESH_TR_dB 10.0f
#define THRESH_TR_LIN (float) pow( 10.0f, THRESH_TR_dB / 10.0f )
#define THRESH_TR_LIN_INV (float) pow( 10.0f, -THRESH_TR_dB / 10.0f )
#define MAX_INCREASE_GRPOW 0.0f /* maximum amplification in case of transients */
#define MAX_INCREASE_GRPOW_LIN (float) pow( 10.0f, MAX_INCREASE_GRPOW / 10.0f )
#define PHASE_DITH_SCALE (float) pow( 2.0, -16.0 ) /* for scaling random short values to +/- pi */
#define BURST_PHDITH_THRESH ( 4 - 1 ) /* speech start phase dither with <burst_phdith_thresh> losses in a row */
#define BURST_PHDITH_RAMPUP_LEN 2 /* speech ramp up degree of phase dither over a length of <burst_phdith_rampup_len> frames */
#define BURST_ATT_THRESH ( 3 - 1 ) /* speech start attenuate with <burst_att_thresh> losses in a row */
#define ATT_PER_FRAME 4 /* speech attenuation in dB */
#define BETA_MUTE_THR 10 /* time threshold to start beta-noise attenuation */
#define BETA_MUTE_FAC 0.5f /* attenuation factor per additional bad frame */
#define LGW32k 7
#define LGW16k 6
#define LGW48k LGW32k + 1 /* Use the same frequency groups as for SWB + 1 */
#define L_TRANA_LOG32k 8
#define L_TRANA_LOG16k 7
#define DELTA_CORR_F0_INT 2 /* Constant controls the bin range where Jacobsen is used */
#define ST_PFIND_SENS 0.93f /* peakfinder sensitivity */
#define L_PROT_NS 32000000L /* Prototype frame length in nanoseconds (32 ms) */
#define PH_ECU_CORR_LIMIT 0.85f /* Correlation limit for IVAS Phase ECU activation */
#define PH_ECU_N_LIMIT 56 /* fec_alg analysis frame limit for IVAS Phase ECU activation */
#define PFIND_SENS 0.97f /* peakfinder sensitivity */
/*---------------------------------------------------------------------*
* Local functions
*---------------------------------------------------------------------*/
static int16_t rand_phase( const int16_t seed, float *sin_F, float *cos_F );
static float imax2_jacobsen_mag( const float *y_re, const float *y_im );
/*-------------------------------------------------------------------*
* mult_rev2()
*
* Multiplication of two vectors second vector is multiplied in reverse order
*-------------------------------------------------------------------*/
static void mult_rev2(
const float x1[], /* i : Input vector 1 */
const float x2[], /* i : Input vector 2 */
float y[], /* o : Output vector that contains vector 1 .* vector 2 */
const int16_t N /* i : Vector length */
)
{
int16_t i, j;
for ( i = 0, j = N - 1; i < N; i++, j-- )
{
y[i] = x1[i] * x2[j];
}
return;
}
/*-------------------------------------------------------------------*
* fft_spec2()
*
* Square magnitude of fft spectrum
*-------------------------------------------------------------------*/
static void fft_spec2(
float x[], /* i/o: Input vector: complex spectrum -> square magnitude spectrum */
const int16_t N /* i : Vector length */
)
{
int16_t i, j;
for ( i = 1, j = N - 1; i < N / 2; i++, j-- )
{
x[i] = x[i] * x[i] + x[j] * x[j];
}
x[0] *= x[0];
x[N / 2] *= x[N / 2];
return;
}
/*------------------------------------------------------------------*
* rand_phase()
*
* randomized phase in form of sin and cos components
*------------------------------------------------------------------*/
/*! r: Updated seed from RNG */
static int16_t rand_phase(
const int16_t seed, /* i : RNG seed */
float *sin_F, /* o : random phase sin value */
float *cos_F /* o : random phase cos value */
)
{
const float *sincos = sincos_t_ext + 128;
int16_t seed2 = seed;
own_random( &seed2 );
if ( seed2 & 0x40 )
{
*sin_F = sincos[seed2 >> 8];
}
else
{
*sin_F = -sincos[seed2 >> 8];
}
if ( seed2 & 0x80 )
{
*cos_F = sincos[-( seed2 >> 8 )];
}
else
{
*cos_F = -sincos[-( seed2 >> 8 )];
}
return seed2;
}
/*-----------------------------------------------------------------------------
* imax2_jacobsen_mag()
*
* refine peak interpolation using jacobsen and periodic speca ana windows
*----------------------------------------------------------------------------*/
/*! r: The location, relative to the middle of the 3 given data point, of the maximum. (Q15)*/
float imax2_jacobsen_mag(
const float *y_re, /* i : The 3 given data points. real part order -1 0 1 */
const float *y_im /* i : The 3 given data points. imag part order 1 0 -1 (from FFT) */
)
{
float posi;
const float *pY;
float y_m1_re, y_0_re, y_p1_re;
float y_m1_im, y_0_im, y_p1_im;
float N_re, N_im;
float D_re, D_im;
float numer, denom;
/* Jacobsen estimates peak offset relative y_0 using
* X_m1 - X_p1
* d = REAL ( ------------------- ) * c_jacob
* 2*X_0 - X_m1 -Xp1
*
* Where c_jacob is a window dependent constant
*/
#define C_JACOB 1.1453f /* % assume 0.1875 hammrect window 'symmetric' */
/* Get the bin parameters into variables */
pY = y_re;
y_m1_re = *pY++;
y_0_re = *pY++;
y_p1_re = *pY++;
/* Same for imaginary parts - note reverse order from FFT */
pY = y_im;
y_p1_im = *pY++;
y_0_im = *pY++;
y_m1_im = *pY++;
/* prepare numerator real and imaginary parts*/
N_re = y_m1_re - y_p1_re;
N_im = y_m1_im - y_p1_im;
/* prepare denominator real and imaginary parts */
D_re = 2 * y_0_re - y_m1_re - y_p1_re;
D_im = 2 * y_0_im - y_m1_im - y_p1_im;
/* REAL part of complex division */
numer = N_re * D_re + N_im * D_im;
denom = D_re * D_re + D_im * D_im;
test();
if ( numer != 0 && denom != 0 )
{
posi = numer / denom * C_JACOB;
}
else
{
posi = 0; /* flat top, division is not possible choose center freq */
}
return posi;
}
/*------------------------------------------------------------------*
* trans_ana()
*
* Transient analysis
*------------------------------------------------------------------*/
static void trans_ana(
const float *xfp, /* i : Input signal */
float *mag_chg, /* i/o: Magnitude modification */
float *ph_dith, /* i/o: Phase dither */
float *mag_chg_1st, /* i/o: per band magnitude modifier for transients */
const int16_t output_frame, /* i : Frame length */
const int16_t time_offs, /* i : Time offset */
const float est_mus_content, /* i : 0.0=speech_like ... 1.0=Music (==st->env_stab ) */
const int16_t last_fec, /* i : signal that previous frame was concealed with fec_alg*/
float *alpha, /* o : Magnitude modification factors for fade to average */
float *beta, /* o : Magnitude modification factors for fade to average */
float *beta_mute, /* o : Factor for long-term mute */
float Xavg[LGW_MAX] /* o : Frequency group average gain to fade to */
)
{
const float *w_hamm;
float grp_pow_chg, att_val, att_degree;
float xfp_left[L_TRANA48k], xfp_right[L_TRANA48k];
float gr_pow_left[LGW_MAX], gr_pow_right[LGW_MAX];
const float *xfp_;
int16_t Ltrana, Ltrana_2, Lprot, LtranaLog = 0, Lgw, k, burst_len;
int16_t att_always[LGW_MAX]; /* fixed attenuation per frequency group if set to 1*/
int16_t burst_phdith_thresh;
int16_t burst_att_thresh;
float att_per_frame;
int16_t tr_dec[LGW_MAX];
/* check burst error */
burst_len = time_offs / output_frame + 1;
set_s( att_always, 0, LGW_MAX );
*ph_dith = 0.0f;
/* softly shift attenuation just a bit later for estimated "stable" music_content */
burst_phdith_thresh = BURST_PHDITH_THRESH + (int16_t) ( est_mus_content * 1.0f + 0.5f );
burst_att_thresh = BURST_ATT_THRESH + (int16_t) ( est_mus_content * 1.0f + 0.5f );
att_per_frame = (float) ( ATT_PER_FRAME - (int16_t) ( est_mus_content * 1.0f + 0.5f ) ); /* only slighty less att for music */
att_per_frame *= 0.1f;
if ( burst_len > burst_phdith_thresh )
{
/* increase degree of dither */
*ph_dith = PHASE_DITH * min( 1.0f, ( (float) burst_len - (float) burst_phdith_thresh ) / (float) BURST_PHDITH_RAMPUP_LEN );
}
att_degree = 0;
if ( burst_len > burst_att_thresh )
{
set_s( att_always, 1, LGW_MAX );
/* increase degree of attenuation */
if ( burst_len - burst_att_thresh <= PH_ECU_MUTE_START )
{
att_degree = (float) ( burst_len - burst_att_thresh ) * att_per_frame;
}
else
{
att_degree = (float) PH_ECU_MUTE_START * att_per_frame + ( burst_len - burst_att_thresh - PH_ECU_MUTE_START ) * 6.0206f;
}
}
Lprot = ( 2 * output_frame * 4 ) / 5; /* 4/5==1024/1280, keep mult within short */
Ltrana = Lprot / QUOT_LPR_LTR;
Ltrana_2 = Ltrana / 2;
if ( output_frame == L_FRAME48k )
{
w_hamm = w_hamm48k_2;
Lgw = LGW48k;
}
else if ( output_frame == L_FRAME32k )
{
w_hamm = w_hamm32k_2;
LtranaLog = L_TRANA_LOG32k;
Lgw = LGW32k;
}
else
{
w_hamm = w_hamm16k_2;
LtranaLog = L_TRANA_LOG16k;
Lgw = LGW16k;
}
if ( burst_len <= 1 || ( burst_len == 2 && last_fec ) )
{
set_f( alpha, 1.0f, LGW_MAX );
set_f( beta, 0.0f, LGW_MAX );
*beta_mute = BETA_MUTE_FAC_INI;
/* apply hamming window */
v_mult( xfp, w_hamm, xfp_left, Ltrana_2 );
mult_rev2( xfp + Ltrana_2, w_hamm, xfp_left + Ltrana_2, Ltrana_2 );
xfp_ = xfp + Lprot - Ltrana;
v_mult( xfp_, w_hamm, xfp_right, Ltrana_2 );
mult_rev2( xfp_ + Ltrana_2, w_hamm, xfp_right + Ltrana_2, Ltrana_2 );
/* spectrum */
if ( output_frame == L_FRAME48k )
{
fft3( xfp_left, xfp_left, Ltrana );
fft3( xfp_right, xfp_right, Ltrana );
}
else
{
fft_rel( xfp_left, Ltrana, LtranaLog );
fft_rel( xfp_right, Ltrana, LtranaLog );
}
/* square representation */
fft_spec2( xfp_left, Ltrana );
fft_spec2( xfp_right, Ltrana );
/* band powers in frequency groups
exclude bin at 0 and at EVS_PI from calculation */
xfp_left[Ltrana_2] = 0.0f;
xfp_right[Ltrana_2] = 0.0f;
}
for ( k = 0; k < Lgw; k++ )
{
if ( burst_len <= 1 || ( burst_len == 2 && last_fec ) )
{
gr_pow_left[k] = sum_f( xfp_left + gw[k], gw[k + 1] - gw[k] );
gr_pow_right[k] = sum_f( xfp_right + gw[k], gw[k + 1] - gw[k] );
/* check if transient in any of the bands */
gr_pow_left[k] += FLT_MIN; /* otherwise div by zero may occur */
gr_pow_right[k] += FLT_MIN;
Xavg[k] = (float) ( sqrt( 0.5f * ( gr_pow_left[k] + gr_pow_right[k] ) / (float) ( gw[k + 1] - gw[k] ) ) );
grp_pow_chg = gr_pow_right[k] / gr_pow_left[k];
/* dither phase in case of transient */
/* separate transition detection and application of forced burst dithering */
tr_dec[k] = ( grp_pow_chg > THRESH_TR_LIN ) || ( grp_pow_chg < THRESH_TR_LIN_INV );
/* magnitude modification */
if ( tr_dec[k] || att_always[k] )
{
att_val = min( MAX_INCREASE_GRPOW_LIN, grp_pow_chg );
att_val = (float) sqrt( att_val );
mag_chg_1st[k] = att_val;
mag_chg[k] = att_val;
}
else
{
mag_chg_1st[k] = 1.0f;
mag_chg[k] = 1.0f;
}
}
else
{
if ( burst_len < OFF_FRAMES_LIMIT )
{
mag_chg[k] = mag_chg_1st[k] * (float) pow( 10.0, -att_degree / 20.0 );
}
else
{
mag_chg[k] = 0;
}
if ( burst_len > BETA_MUTE_THR )
{
*beta_mute *= BETA_MUTE_FAC;
}
alpha[k] = mag_chg[k];
beta[k] = (float) ( sqrt( 1.0f - SQR( alpha[k] ) ) * *beta_mute );
if ( k >= LGW32k - 1 )
{
beta[k] *= 0.1f;
}
else if ( k >= LGW16k - 1 )
{
beta[k] *= 0.5f;
}
}
}
return;
}
/*------------------------------------------------------------------*
* peakfinder()
*
* Peak-picking algorithm
*------------------------------------------------------------------*/
void peakfinder(
const float *x0, /* i : vector from which the maxima will be found */
const int16_t len0, /* i : length of input vector */
int16_t *plocs, /* o : the indicies of the identified peaks in x0 */
int16_t *cInd, /* o : number of identified peaks */
const float sel, /* i : The amount above surrounding data for a peak to be identified */
const int16_t endpoints /* i : Flag to include endpoints in peak search */
)
{
float minMag, tempMag, leftMin;
float dx0[L_PROT48k_2], x[L_PROT48k_2 + 1], peakMag[MAX_PLOCS];
int16_t k, i, len, tempLoc = 0, foundPeak, ii, xInd;
int16_t *ind, indarr[L_PROT48k_2 + 1], peakLoc[MAX_PLOCS];
ind = indarr;
/* Find derivative */
v_sub( x0 + 1, x0, dx0, len0 - 1 );
/* This is so we find the first of repeated values */
for ( i = 0; i < len0 - 1; i++ )
{
if ( dx0[i] == 0.0f )
{
dx0[i] = -1.0e-12f;
}
}
/* Find where the derivative changes sign
Include endpoints in potential peaks and valleys */
k = 0;
if ( endpoints )
{
x[k] = x0[0];
ind[k++] = 0;
}
for ( i = 1; i < len0 - 1; i++ )
{
if ( dx0[i - 1] * dx0[i] < 0 )
{
ind[k] = i;
x[k++] = x0[i];
}
}
if ( endpoints )
{
ind[k] = len0 - 1;
x[k++] = x0[len0 - 1];
}
/* x only has the peaks, valleys, and endpoints */
len = k;
minimum( x, len, &minMag );
if ( ( len > 2 ) || ( !endpoints && ( len > 0 ) ) )
{
/* Set initial parameters for loop */
tempMag = minMag;
foundPeak = 0;
leftMin = minMag;
if ( endpoints )
{
/* Deal with first point a little differently since tacked it on
Calculate the sign of the derivative since we taked the first point
on it does not necessarily alternate like the rest. */
/* The first point is larger or equal to the second */
if ( x[0] >= x[1] )
{
ii = -1;
if ( x[1] >= x[2] ) /* x[1] is not extremum -> overwrite with x[0] */
{
x[1] = x[0];
ind[1] = ind[0];
ind++;
len--;
}
}
else /* First point is smaller than the second */
{
ii = 0;
if ( x[1] < x[2] ) /* x[1] is not extremum -> overwrite with x[0] */
{
x[1] = x[0];
ind[1] = ind[0];
ind++;
len--;
}
}
}
else
{
ii = -1; /* First point is a peak */
if ( len >= 2 )
{
if ( x[1] >= x[0] )
{
ii = 0; /* First point is a valley, skip it */
}
}
}
*cInd = 0;
/* Loop through extrema which should be peaks and then valleys */
while ( ii < len - 1 )
{
ii++; /* This is a peak */
/*Reset peak finding if we had a peak and the next peak is bigger
than the last or the left min was small enough to reset.*/
if ( foundPeak )
{
tempMag = minMag;
foundPeak = 0;
}
/* Make sure we don't iterate past the length of our vector */
if ( ii == len - 1 )
{
break; /* We assign the last point differently out of the loop */
}
/* Found new peak that was larger than temp mag and selectivity larger
than the minimum to its left. */
if ( ( x[ii] > tempMag ) && ( x[ii] > leftMin + sel ) )
{
tempLoc = ii;
tempMag = x[ii];
}
ii++; /* Move onto the valley */
/* Come down at least sel from peak */
if ( !foundPeak && ( tempMag > sel + x[ii] ) )
{
foundPeak = 1; /* We have found a peak */
leftMin = x[ii];
peakLoc[*cInd] = tempLoc; /* Add peak to index */
peakMag[*cInd] = tempMag;
( *cInd )++;
}
else if ( x[ii] < leftMin ) /* New left minimum */
{
leftMin = x[ii];
}
}
/* Check end point */
if ( x[len - 1] > tempMag && x[len - 1] > leftMin + sel )
{
peakLoc[*cInd] = len - 1;
peakMag[*cInd] = x[len - 1];
( *cInd )++;
}
else if ( !foundPeak && tempMag > minMag ) /* Check if we still need to add the last point */
{
peakLoc[*cInd] = tempLoc;
peakMag[*cInd] = tempMag;
( *cInd )++;
}
/* Create output */
for ( i = 0; i < *cInd; i++ )
{
plocs[i] = ind[peakLoc[i]];
}
}
else
{
if ( endpoints )
{
/* This is a monotone function where an endpoint is the only peak */
xInd = ( x[0] > x[1] ) ? 0 : 1;
peakMag[0] = x[xInd];
if ( peakMag[0] > minMag + sel )
{
plocs[0] = ind[xInd];
*cInd = 1;
}
else
{
*cInd = 0;
}
}
else
{
/* Input constant or all zeros -- no peaks found */
*cInd = 0;
}
}
return;
}
/*-------------------------------------------------------------------*
* imax_pos()
*
* Get interpolated maximum position
*-------------------------------------------------------------------*/
/*! r: interpolated maximum position */
float imax_pos(
const float *y /* i : Input vector for peak interpolation */
)
{
float posi, y1, y2, y3, y3_y1, y2i;
float ftmp_den1, ftmp_den2;
/* Seek the extrema of the parabola P(x) defined by 3 consecutive points so that P([-1 0 1]) = [y1 y2 y3] */
y1 = y[0];
y2 = y[1];
y3 = y[2];
y3_y1 = y3 - y1;
ftmp_den1 = ( y1 + y3 - 2 * y2 );
ftmp_den2 = ( 4 * y2 - 2 * y1 - 2 * y3 );
if ( ftmp_den2 == 0.0f || ftmp_den1 == 0.0f )
{
return ( 0.0f ); /* early exit with left-most value */
}
y2i = -0.125f * SQR( y3_y1 ) / ( ftmp_den1 ) + y2;
/* their corresponding normalized locations */
posi = y3_y1 / ( ftmp_den2 );
/* Interpolated maxima if locations are not within [-1,1], calculated extrema are ignored */
if ( posi >= 1.0f || posi <= -1.0f )
{
posi = y3 > y1 ? 1.0f : -1.0f;
}
else
{
if ( y1 >= y2i )
{
posi = ( y1 > y3 ) ? -1.0f : 1.0f;
}
else if ( y3 >= y2i )
{
posi = 1.0f;
}
}
return posi + 1.0f;
}
/*-------------------------------------------------------------------*
* spec_ana()
*
* Spectral analysis
*-------------------------------------------------------------------*/
static void spec_ana(
const float *prevsynth, /* i : Input signal */
int16_t *plocs, /* o : The indicies of the identified peaks */
float *plocsi, /* o : Interpolated positions of the identified peaks */
int16_t *num_plocs, /* o : Number of identified peaks */
float *X_sav, /* o : Stored fft spectrum */
const int16_t output_frame, /* i : Frame length */
const int16_t bwidth, /* i : Encoded bandwidth */
const int16_t element_mode, /* i : IVAS element mode */
float *noise_fac, /* o : for few peaks zeroing valleys decision making */
const float pcorr )
{
int16_t i, Lprot, LprotLog2 = 0, hamm_len2 = 0, Lprot2_1, m;
float *pPlocsi;
int16_t *pPlocs;
int16_t currPlocs, endPlocs, Lprot2p1, nJacob;
int16_t n, k;
int16_t st_point;
int16_t end_point;
float sig, noise, nsr;
float window_corr_step, window_corr;
const float *w_hamm = NULL;
float xfp[L_PROT48k];
float Xmax, Xmin, sel;
int16_t stop_band_start;
int16_t stop_band_length;
Lprot = 2 * output_frame * L_PROT32k / 1280;
Lprot2_1 = Lprot / 2 + 1;
if ( output_frame == L_FRAME48k )
{
w_hamm = w_hamm_sana48k_2;
hamm_len2 = L_PROT_HAMM_LEN2_48k;
}
else if ( output_frame == L_FRAME32k )
{
w_hamm = w_hamm_sana32k_2;
hamm_len2 = L_PROT_HAMM_LEN2_32k;
LprotLog2 = 10;
}
else
{
w_hamm = w_hamm_sana16k_2;
hamm_len2 = L_PROT_HAMM_LEN2_16k;
LprotLog2 = 9;
}
/* Apply hamming-rect window */
mvr2r( prevsynth + hamm_len2, xfp + hamm_len2, Lprot - 2 * hamm_len2 );
if ( element_mode == EVS_MONO )
{
v_mult( prevsynth, w_hamm, xfp, hamm_len2 );
mult_rev2( prevsynth + Lprot - hamm_len2, w_hamm, xfp + Lprot - hamm_len2, hamm_len2 );
}
else
{
window_corr = w_hamm[0];
window_corr_step = w_hamm[0] / hamm_len2;
for ( i = 0; i < hamm_len2; i++ )
{
xfp[i] = prevsynth[i] * ( w_hamm[i] - window_corr );
xfp[Lprot - i - 1] = prevsynth[Lprot - i - 1] * ( w_hamm[i] - window_corr );
window_corr -= window_corr_step;
}
}
/* Spectrum */
if ( output_frame == L_FRAME48k )
{
fft3( xfp, xfp, Lprot );
}
else
{
fft_rel( xfp, Lprot, LprotLog2 );
}
/* Apply zeroing of non-coded FFT spectrum */
if ( output_frame > inner_frame_tbl[bwidth] )
{
stop_band_start = 128 << bwidth;
stop_band_length = Lprot - ( stop_band_start << 1 );
stop_band_start = stop_band_start + 1;
set_f( xfp + stop_band_start, 0, stop_band_length );
}
mvr2r( xfp, X_sav, Lprot );
/* Magnitude representation */
fft_spec2( xfp, Lprot );
for ( i = 0; i < Lprot2_1; i++ )
{
xfp[i] = (float) sqrt( (double) xfp[i] );
}
/* Find maxima */
maximum( xfp, Lprot2_1, &Xmax );
minimum( xfp, Lprot2_1, &Xmin );
if ( element_mode == EVS_MONO )
{
sel = ( Xmax - Xmin ) * ( 1.0f - PFIND_SENS );
}
else
{
sel = ( Xmax - Xmin ) * ( 1.0f - ST_PFIND_SENS );
}
peakfinder( xfp, Lprot2_1, plocs, num_plocs, sel, TRUE ); /* NB peak at xfp[0] and xfp Lprot2_1-1 may occur */
/* Currently not the pitch correlation but some LF correlation */
if ( element_mode != EVS_MONO && *num_plocs > 50 && pcorr < 0.6f )
{
*num_plocs = 0;
}
if ( element_mode == EVS_MONO )
{
/* Refine peaks */
for ( m = 0; m < *num_plocs; m++ )
{
if ( plocs[m] == 0 )
{
plocsi[m] = plocs[m] + imax_pos( &xfp[plocs[m]] );
}
else if ( plocs[m] == Lprot / 2 )
{
plocsi[m] = plocs[m] - 2 + imax_pos( &xfp[plocs[m] - 2] );
}
else
{
plocsi[m] = plocs[m] - 1 + imax_pos( &xfp[plocs[m] - 1] );
}
}
}
else
{
Lprot2p1 = Lprot / 2 + 1;
/* Refine peaks */
pPlocsi = plocsi;
pPlocs = plocs;
n = *num_plocs; /* number of peaks to process */
/* Special case-- The very 1st peak if it is at 0 index position (DC) */
/* With DELTA_CORR_F0_INT == 2 one needs to handle both *pPlocs==0 and *pPlocs==1 */
if ( n > 0 && *pPlocs == 0 ) /* Very 1st peak position possible to have a peak at 0/DC index position. */
{
*pPlocsi++ = *pPlocs + imax_pos( &xfp[*pPlocs] );
pPlocs++;
n = n - 1;
}
if ( n > 0 && *pPlocs == 1 ) /* Also 2nd peak position uses DC which makes jacobsen unsuitable. */
{
*pPlocsi++ = *pPlocs - 1 + imax_pos( &xfp[*pPlocs - 1] );
currPlocs = *pPlocs++;
n = n - 1;
}
/* All remaining peaks except the very last two possible integer positions */
currPlocs = *pPlocs++;
endPlocs = Lprot2p1 - DELTA_CORR_F0_INT; /* last *pPlocs position for Jacobsen */
/* precompute number of turns based on endpoint integer location and make into a proper for loop */
if ( n > 0 )
{
nJacob = n;
if ( sub( endPlocs, plocs[sub( *num_plocs, 1 )] ) <= 0 )
{
nJacob = sub( nJacob, 1 );
}
for ( k = 0; k < nJacob; k++ )
{
*pPlocsi++ = currPlocs + imax2_jacobsen_mag( &( X_sav[currPlocs - 1] ), &( X_sav[Lprot - 1 - currPlocs] ) );
currPlocs = *pPlocs++;
}
n = n - nJacob;
}
/* At this point there should at most two plocs left to process */
/* the position before fs/2 and fs/2 both use the same magnitude points */
if ( n > 0 )
{
/* [ . . . . . . . ] Lprot/2+1 positions */
/* | | | */
/* 0 (Lprot/2-2) (Lprot/2) */
if ( currPlocs == ( Lprot2p1 - DELTA_CORR_F0_INT ) ) /* Also 2nd last peak position uses fs/2 which makes jacobsen less suitable. */
{
*pPlocsi++ = currPlocs - 1 + imax_pos( &xfp[currPlocs - 1] );
currPlocs = *pPlocs++;
n = n - 1;
}
/* Here the only remaining point would be a fs/2 plocs */
/* pXfp = xfp + sub(Lprot2,1); already set just a reminder where it
* whould point */
if ( n > 0 ) /* fs/2 which makes special case . */
{
*pPlocsi++ = currPlocs - 2 + imax_pos( &xfp[currPlocs - 2] );
currPlocs = *pPlocs++;
n = n - 1;
}
}
/* For few peaks decide noise floor attenuation */
if ( *num_plocs < 3 && *num_plocs > 0 )
{
sig = sum_f( xfp, Lprot2_1 ) + EPSILON;
/*excluding peaks and neighboring bins*/
for ( i = 0; i < *num_plocs; i++ )
{
st_point = max( 0, plocs[i] - DELTA_CORR );
end_point = min( Lprot2_1 - 1, plocs[i] + DELTA_CORR );
set_f( &xfp[st_point], 0.0f, end_point - st_point + 1 );
}
noise = sum_f( xfp, Lprot2_1 ) + EPSILON;
nsr = noise / sig;
if ( nsr < 0.03f )
{
*noise_fac = 0.5f;
}
else
{
*noise_fac = 1.0f;
}
}
}
return;
}
/*-------------------------------------------------------------------*
* subst_spec()
*
* Substitution spectrum calculation
*-------------------------------------------------------------------*/
static void subst_spec(
const int16_t *plocs, /* i : The indicies of the identified peaks */
const float *plocsi, /* i : Interpolated positions of the identified peaks */
int16_t *num_plocs, /* i/o: Number of identified peaks */
const int16_t time_offs, /* i : Time offset */
float *X, /* i/o: FFT spectrum */
const float *mag_chg, /* i : Magnitude modification */
const float ph_dith, /* i : Phase dither */
const int16_t *is_trans, /* i : Transient flags */
const int16_t output_frame, /* i : Frame length */
int16_t *seed, /* i/o: Random seed */
const float *alpha, /* i : Magnitude modification factors for fade to average */
const float *beta, /* i : Magnitude modification factors for fade to average */
float beta_mute, /* i : Factor for long-term mute */
const float Xavg[LGW_MAX], /* i : Frequency group averages to fade to */
const int16_t element_mode, /* i : IVAS element mode */
const int16_t ph_ecu_lookahead, /* i : Phase ECU lookahead */
const float noise_fac /* i : noise factor */
)
{
const float *sincos;
int16_t Xph_short;
float corr_phase[MAX_PLOCS], Xph;
float Lprot_1, cos_F, sin_F, tmp;
int16_t Lprot, Lecu, m, i, e, im_ind, delta_corr_up, delta_corr_dn, delta_tmp;
float mag_chg_local; /* for peak attenuation in burst */
int16_t k;
float one_peak_flag_mask;
float alpha_local;
float beta_local;
sincos = sincos_t_ext + 128;
Lprot = (int16_t) ( L_PROT32k * output_frame / 640 );
Lprot_1 = 1.0f / Lprot;
Lecu = output_frame * 2;
/* Correction phase of the identified peaks */
if ( is_trans[0] || is_trans[1] )
{
*num_plocs = 0;
}
else
{
tmp = PI2 * ( Lecu - ( Lecu - Lprot ) / 2 + NS2SA( output_frame * FRAMES_PER_SEC, PH_ECU_ALDO_OLP2_NS ) - ph_ecu_lookahead - output_frame / 2 + time_offs ) * Lprot_1;
for ( m = 0; m < *num_plocs; m++ )
{
corr_phase[m] = plocsi[m] * tmp;
}
}
one_peak_flag_mask = 1; /* all ones mask -> keep */
if ( element_mode != EVS_MONO )
{
if ( ( *num_plocs > 0 ) && sub( *num_plocs, 3 ) < 0 )
{
one_peak_flag_mask = noise_fac; /* all zeroes mask -> zero */